DOC316.53.01157

Hardness, Calcium

Titration Method with EDTA^{1, 2}

Method 8222

0-25,000 mg/L as CaCO₃

Buret Titration

Scope and application: For water, wastewater and seawater.

- ¹ USEPA accepted when 0.020 N titrant is used.
- ² Adapted from Standard Methods for the Examination of Water and Wastewater.

Test preparation

Before starting

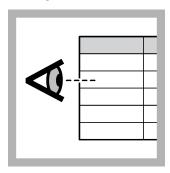
Magnesium is not included in the results but must be in the sample for a sharp endpoint. If the sample does not contain magnesium, add 1 to 2 drops of Magnesium Standard Solution, 10-g/L as CaCO₃, to the sample before the test is started.

As an alternative to the CalVer 2 Calcium Indicator Powder Pillow, use a 0.1-g scoop of CalVer 2 Calcium Indicator Powder.

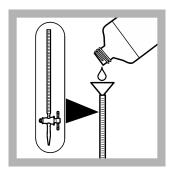
Review the Safety Data Sheets (MSDS/SDS) for the chemicals that are used. Use the recommended personal protective equipment.

Dispose of reacted solutions according to local, state and federal regulations. Refer to the Safety Data Sheets for disposal information for unused reagents. Refer to the environmental, health and safety staff for your facility and/or local regulatory agencies for further disposal information.

Items to collect


Description	Quantity
CalVer 2 Calcium Indicator Powder Pillow	1
Potassium Hydroxide Standard Solution, 8 N	1 mL
TitraVer Hardness Titrant (use a concentration that is applicable to the selected sample volume)	varies
Buret, Class A, 25 mL	1
Graduated cylinder (use a size that is applicable to the selected sample volume), or TenSette pipet with tips	1
Erlenmeyer flask, 250 mL	1
Funnel, micro	1
Support stand with buret clamp	1
Water, deionized	varies

Refer to Consumables and replacement items on page 6 for order information.


Sample collection

- Collect samples in clean glass or plastic bottles that have been cleaned with a detergent and rinsed with 1:1 nitric acid and deionized water.
- To preserve samples for later analysis, adjust the sample pH to 2 or less with concentrated nitric acid (about 2 mL per liter). No acid addition is necessary if the sample is tested immediately.
- Keep the preserved samples at room temperature for a maximum of 6 months.
- Before analysis, adjust the pH to 7 with Potassium Hydroxide Standard Solution.
- Correct the test result for the dilution caused by the volume additions.

Test procedure

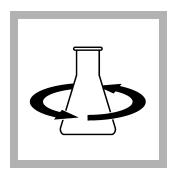
1. Select a sample volume and titrant from Table 1 on page 3.

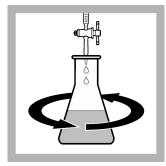
2. Fill a 25-mL buret to the zero mark with the titrant.

3. Use a graduated cylinder or a pipet¹ to measure the sample volume from Table 1 on page 3.

4. Pour the sample into a clean, 250-mL Erlenmeyer flask.

5. If the sample volume is less than 50 mL, dilute to approximately 50 mL with deionized water.


6. Add 1 mL of 8 N Potassium Hydroxide Standard Solution.


7. Swirl to mix.

Add the contents of one CalVer 2 Calcium Indicator Powder Pillow.

9. Swirl to mix.

10. Put the flask under the buret. Swirl the flask. Add titrant until the color changes from red to pure blue.

11. Use the multiplier in Table 1 on page 3 to calculate the concentration. mL of titrant × multiplier = mg/L Ca as CaCO₃.

Sample volumes and multipliers

Select a range in Table 1, then read across the table row to find the applicable information for this test. Use the multiplier to calculate the concentration in the test procedure.

¹ Titration accuracy has a direct relation to the accuracy of the sample volume measurement. For smaller volumes, it is recommended to use a pipet to increase accuracy.

Example: A 50-mL sample was titrated with 0.020 N titrant and 12 mL of titrant was used at the endpoint. The concentration is $12 \text{ mL} \times 20 = 240 \text{ mg/L}$ Ca as $CaCO_3$.

Table 1 Sample volumes and multipliers

Range (mg/L)	Sample volume (mL)	Titrant—TitraVer hardness	Multiplier
0–500	50	0.020 N	20
400–1000	25	0.020 N	40
1000–2500	10	0.020 N	100
2000–5000	5	0.020 N	200
1000–5000	50	0.200 N	200
4000–10,000	25	0.200 N	400
10,000–25,000	10	0.200 N	1000

Conversions units

To change the units or chemical form of the test result, multiply the test result by the factor in Table 2.

Table 2 Conversions

mg/L Ca as CaCO ₃ to	multiply by	Example
mg/L as Ca	0.40	1000 mg/L as CaCO ₃ x 0.40 = 400 mg/L Ca
German degrees hardness (Gdh)	0.056	1000 mg/L as CaCO ₃ × 0.056 = 56 Gdh
Grains per gallon (gpg)	0.058	1000 mg/L as CaCO ₃ x 0.058 = 58 gpg

Interferences

AWARNING

Chemical hazard. Potassium cyanide is toxic. Make sure to add potassium cyanide to the sample after the 8 N Potassium Hydroxide Standard Solution has been added. Keep cyanide solutions at more than pH 11 to prevent exposure to hydrogen cyanide gas. Dispose of reacted solutions according to local, state and federal regulations.

An interfering substance can prevent the color change at the titration endpoint. A smaller sample volume can often dilute the interfering substance to a level at which the substance does not interfere. Table 3 shows the substances that can interfere with this test.

Table 3 Interferences

Interfering substance	Interference level
Acidity	10,000 mg/L acidity as CaCO ₃ does not interfere.
Alkalinity	10,000 mg/L alkalinity as CaCO ₃ does not interfere.
Aluminum	Causes a slow endpoint. The sample can contain a maximum of 200 mg/L aluminum if sufficient time is given for the color change.
Barium	Barium is titrated at the same time with calcium and interferes with this test, but it is unusual to find high levels of Barium in natural waters.
Chloride	The chloride level in seawater does not interfere. Solutions that are saturated with chloride do not show a sharp endpoint.
Cobalt	Interferes directly. Add 0.5 grams of potassium cyanide after the 8 N Potassium Hydroxide Standard Solution during the test procedure to remove the interference from a maximum of 20 mg/L cobalt.

Table 3 Interferences (continued)

Interfering substance	Interference level
Copper	Interferes at 0.1 mg/L copper. Add 0.5 grams of potassium cyanide after the 8 N Potassium Hydroxide Standard Solution during the test procedure to remove the interference from a maximum of 100 mg/L copper.
Iron	More than 8 mg/L iron causes an orange-red to green endpoint. Results are accurate to 20 mg/L iron with this endpoint.
Magnesium	The formation of magnesium hydroxide at the high test pH prevents interference from 200 mg/L magnesium. Samples with more than 200 mg/L magnesium do not give a distinct endpoint.
Manganese	Interferes at more than 5 mg/L manganese.
Nickel	Interferes at 0.5 mg/L nickel. Add 0.5 grams of potassium cyanide after the 8 N Potassium Hydroxide Standard Solution during the test procedure to remove the interference from a maximum of 200 mg/L nickel.
Orthophosphate	Forms calcium phosphate and causes a slow endpoint. If sufficient time is given to let the calcium phosphate dissolve during the titration, the orthophosphate will not interfere with the test.
Polyphosphates	Interfere directly and are included in the test result.
Strontium	Strontium is titrated at the same time with calcium and interferes with this test, but it is unusual to find high levels of Strontium in natural waters.
Temperature	Samples at 20 °C (68 °F) or colder should be titrated slowly near the endpoint to give sufficient time for the color change.
Zinc	Interferes at 5 mg/L zinc. Add 0.5 grams of potassium cyanide after the 8 N Potassium Hydroxide Standard Solution during the test procedure to remove the interference from a maximum of 100 mg/L zinc.
Highly buffered samples or extreme sample pH	Can prevent the correct pH adjustment (of the sample) by the reagents. Sample pretreatment may be necessary.

Accuracy check

Standard additions method (sample spike)—0.020 N titrant

Use the standard additions method to validate the test procedure, reagents, apparatus, technique and to find if there is an interference in the sample.

Items to collect:

- Calcium Hardness Standard Solution, 10,000 mg/L as CaCO₃, 10-mL Voluette ampule
- Ampule Breaker
- Pipet, TenSette, 0.1–1.0 mL and pipet tips
- 1. Use the test procedure to measure the concentration of the standard solution. Use the 0.020 N titrant.
- 2. Use a TenSette pipet to add 0.1 mL of the standard solution to the titrated sample.
- 3. Titrate the spiked sample to the endpoint. Record the mL of titrant added.
- **4.** Add one more 0.1-mL addition of the standard solution to the titrated sample.
- **5.** Titrate the spiked sample to the endpoint. Record the mL of titrant added.
- **6.** Add one more 0.1-mL addition of the standard solution to the titrated sample.
- 7. Titrate the spiked sample to the endpoint. Record the mL of titrant added.
- 8. Compare the actual result to the correct result. The correct result for this titration is 1.0 mL of titrant for each 0.1-mL addition of the standard solution. If much more or less titrant was used, there can be a problem with user technique, reagents, apparatus or an interference.

Standard additions method (sample spike)—0.200 N titrant

Use the standard additions method to validate the test procedure, reagents, apparatus, technique and to find if there is an interference in the sample.

Items to collect:

- Calcium Hardness Standard Solution, 10,000 mg/L as CaCO₃, 10-mL Voluette ampule
- Ampule Breaker
- Pipet, TenSette, 0.1–1.0 mL and pipet tips
- Use the test procedure to measure the concentration of the standard solution. Use the 0.200 N titrant.
- 2. Use a TenSette pipet to add 1.0 mL of the standard solution to the titrated sample.
- 3. Titrate the spiked sample to the endpoint. Record the mL of titrant added.
- **4.** Add one more 1.0-mL addition of the standard solution to the titrated sample.
- **5.** Titrate the spiked sample to the endpoint. Record the mL of titrant added.
- **6.** Add one more 1.0-mL addition of the standard solution to the titrated sample.
- **7.** Titrate the spiked sample to the endpoint. Record the mL of titrant added.
- 8. Compare the actual result to the correct result. The correct result for this titration is 1.0 mL of titrant for each 1.0-mL addition of the standard solution. If much more or less titrant was used, there can be a problem with user technique, reagents, apparatus or an interference.

Standard solution method—0.020 N titrant

Use the standard solution method to validate the test procedure, reagents, apparatus and technique.

Items to collect:

- Calcium Chloride Standard Solution, 1000 mg/L as CaCO₃
- Pipet, TenSette, 1.0–10.0 mL and pipet tips
- 1. Use the test procedure to measure the concentration of the standard solution. Use 25.0 mL of the standard solution and the 0.020 N titrant.
- 2. Compare the actual result to the correct result. The correct result for this titration is 25 mL of titrant.

Standard solution method—0.200 N titrant

Use the standard solution method to validate the test procedure, reagents, apparatus and technique.

Items to collect:

- Calcium Hardness Standard Solution, 10,000 mg/L as CaCO₃, 10-mL Voluette ampule
- Ampule Breaker
- Pipet, TenSette, 1.0–10.0 mL and pipet tips
- 1. Use the test procedure to measure the concentration of the standard solution. Use 10.0 mL of the standard solution and the 0.200 N titrant.
- 2. Compare the actual result to the correct result. The correct result for this titration is 10 mL of titrant.

Summary of method

Potassium hydroxide is added to the sample to adjust the pH to 12 to 13, which causes a magnesium hydroxide precipitate to form. CalVer 2 Calcium Indicator is then added, which reacts with calcium to give a red color. The EDTA titrant is added, which reacts with all the free calcium. After the EDTA has reacted with all of the free calcium ions, the

EDTA removes the calcium from the indicator. The indicator color then changes from red to blue.

Consumables and replacement items

Required reagents

Description	Quantity/Test	Unit	Item no.
Hardness (Calcium) Reagent Set (approximately 100 tests):	_	each	2447000
CalVer 2 Calcium Indicator Powder Pillows	1 pillow	100/pkg	85299
Potassium Hydroxide Standard Solution, 8 N	1 mL	100 mL MDB	28232H
TitraVer [®] Hardness Titrant, 0.020 N	varies	1 L	20553
TitraVer [®] Hardness Titrant, 0.200 N	varies	500 mL	102149

Required apparatus

Description	Quantity/test	Unit	Item no.
Buret clamp, double	1	each	32800
Buret, Class A, 25 mL	1	each	2636540
Support stand	1	each	56300
Funnel, micro	1	each	2584335
Graduated cylinders—Select one or more for the sample volume:			
Cylinder, graduated, 5 mL	1	each	50837
Cylinder, graduated, 10 mL	1	each	50838
Cylinder, graduated, 25 mL	1	each	50840
Cylinder, graduated, 50 mL	1	each	50841
Cylinder, graduated, 100 mL	1	each	50842
Tensette [®] pipets and pipet tips—Select one or more for the sample volume:			
Pipet, TenSette [®] , 0.1–1.0 mL	1	each	1970001
Pipet tips, TenSette [®] Pipet, 0.1–1.0 mL	varies	50/pkg	2185696
Pipet, TenSette [®] , 1.0–10.0 mL	1	each	1970010
Pipet tips, TenSette [®] Pipet, 1.0–10.0 mL	varies	50/pkg	2199796
Flask, Erlenmeyer, 250 mL	1	each	50546

Recommended standards

Description	Unit	Item no.
Calcium Chloride Standard Solution, 1000 mg/L as CaCO ₃	1 L	12153
Calcium Hardness Standard Solution, 10,000 mg/L as CaCO ₃ , 10-mL Voluette ampule	16/pkg	218710

Optional reagents and apparatus

Description	Unit	Item no.
Ampule Breaker, 10-mL Voluette® Ampules	each	2196800
Bottle, sampling, with cap, low density polyethylene, 250 mL	12/pkg	2087076
CalVer® 2 Calcium Indicator Powder	113 g	28114H
Magnesium Standard Solution, 10-g/L as CaCO ₃	29 mL	102233

Optional reagents and apparatus (continued)

Description	Unit	Item no.
Nitric Acid, concentrated	500 mL	15249
Nitric Acid Solution, 1:1	500 mL	254049
Potassium Cyanide, ACS	100 g	76714
Potassium Hydroxide Standard Solution, 8 N	500 mL	28249
Spoon, measuring, 0.1 g	each	51100
Stir bar, octagonal	each	2095352
TitraStir® Titration Stand, 115 VAC	each	1940000
TitraStir® Titration Stand, 230 VAC	each	1940010

