DOC316.53.01030

## **Chlorine Total**

# DPD Rapid Liquid Method<sup>1</sup> 0.02 to 2.00 mg/L Cl<sub>2</sub>

**Method 10060** 

**Pour-Thru Cell** 

**Scope and application:** For treated water. This product has not been evaluated to test for chlorine and chloramines in medical applications in the United States.

<sup>1</sup> Adapted from Standard Methods for the Examination of Water and Wastewater.



## **Test preparation**

## Instrument-specific information

Table 1 shows all of the instruments that have the program for this test. The table also shows sample cell and orientation requirements.

To use the table, select an instrument, then read across to find the applicable information for this test.

Table 1 Instrument-specific information

| Instrument | Sample cell orientation           | Pour-Thru Kit   | Adapter    |
|------------|-----------------------------------|-----------------|------------|
| DR 6000    | The flow path is to the right.    | LQV157.99.20002 | _          |
| DR 3800    |                                   | 5940400         | LZV585 (B) |
| DR 2800    |                                   | 5940400         | LZV585 (B) |
| DR 2700    |                                   | 5940400         | LZV585 (B) |
| DR 1900    |                                   | LZV899          | _          |
| DR 5000    | The flow path is toward the user. | LZV479          | _          |
| DR 3900    |                                   | LQV157.99.10002 | _          |

## Before starting

Samples must be analyzed immediately after collection and cannot be preserved for later analysis.

Refer to the instrument documentation for Pour-Thru cell and module assembly and installation. Make sure to install the Pour-Thru cell correctly.

To protect the Pour-Thru Cell from contamination when not in use, invert a small beaker over the top of the glass funnel.

Prepare the indicator reagent before use. Refer to Prepare the reagents on page 4.

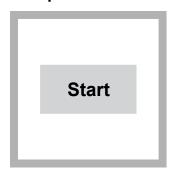
Review the Safety Data Sheets (MSDS/SDS) for the chemicals that are used. Use the recommended personal protective equipment.

Dispose of reacted solutions according to local, state and federal regulations. Refer to the Safety Data Sheets for disposal information for unused reagents. Refer to the environmental, health and safety staff for your facility and/or local regulatory agencies for further disposal information.

#### Items to collect

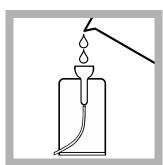
| Description                                                                 | Quantity |
|-----------------------------------------------------------------------------|----------|
| DPD Indicator Powder, 24-g                                                  | varies   |
| Total Chlorine Indicator Solution (refer to Prepare the reagents on page 4) | 1 mL     |
| Total Chlorine Buffer Solution                                              | 1 mL     |
| Deionized water                                                             | varies   |
| Mixing cylinder, graduated, 100-mL glass                                    | 1        |

## Items to collect (continued)

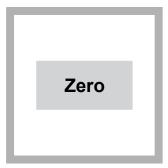

| Description                                                          | Quantity |
|----------------------------------------------------------------------|----------|
| Dispenser, adjustable volume, 1.0–5.0 mL                             | 2        |
| Pour-Thru Module and Cell (Refer to instrument specific information) | 1        |

Refer to Consumables and replacement parts on page 5 for order information.

## Sample collection


- Analyze the samples immediately. The samples cannot be preserved for later analysis.
- Chlorine is a strong oxidizing agent and is unstable in natural waters. Chlorine reacts
  quickly with various inorganic compounds and more slowly with organic compounds.
  Many factors, including reactant concentrations, sunlight, pH, temperature and
  salinity influence the decomposition of chlorine in water.
- Collect samples in clean glass bottles. Do not use plastic containers because these can have a large chlorine demand.
- Pretreat glass sample containers to remove chlorine demand. Soak the containers in a weak bleach solution (1 mL commercial bleach to 1 liter of deionized water) for at least 1 hour. Rinse fully with deionized or distilled water. If sample containers are rinsed fully with deionized or distilled water after use, only occasional pretreatment is necessary.
- Make sure to get a representative sample. If the sample is taken from a spigot or faucet, let the water flow for at least 5 minutes. Let the container overflow with the sample several times and then put the cap on the sample container so that there is no headspace (air) above the sample.

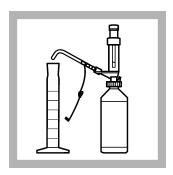
## Test procedure



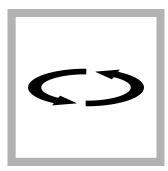

1. Start program 82
Chlorine F&T RL. For information about sample cells, adapters or light shields, refer to Instrument-specific information on page 1.

**Note:** Although the program name can be different between instruments, the program number does not change.




**2.** Pour 50 mL of sample into the Pour-Thru Cell.

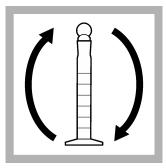



**3.** When the flow stops, push **ZERO**. The display shows 0.00 mg/L CL<sub>2</sub>.



**4.** Use the bottle-top dispenser to add 1.0 mL of Total Chlorine Buffer Solution to a clean, dry 100-mL glass mixing cylinder.




**5.** Use the bottle-top dispenser to add 1.0 mL of prepared Total Chlorine Indicator Solution to the same mixing cylinder.



**6.** Swirl to mix. Continue to the next step immediately.

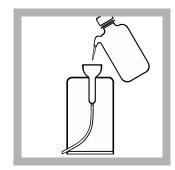


**7.** Carefully fill the same mixing cylinder to the 80-mL mark with sample.



**8.** Put the stopper on the mixing cylinder. Invert the mixing cylinder carefully several times to mix. Continue to the next step immediately.




**9.** Start the instrument timer. A 2-minute reaction time starts. Complete the next two steps within 2 minutes after the timer expires.



10. When the timer expires, fill the funnel of the Pour-Thru Cell with the reacted sample from the mixing cylinder. It is not necessary to pour all of the sample into the Pour-Thru Cell; discard approximately half of the sample.



**11.** When the flow stops, push **READ**. Results show in mg/L CL<sub>2</sub>.



**12.** Flush the Pour-Thru Cell with at least 50-mL of deionized water immediately after use.

#### Interferences

| Interfering substance    | Interference level                                                                                                                                                                                                                                                                  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Alkalinity               | More than 700 mg/L CaCO <sub>3</sub> . May not develop full color or color may fade instantly. Neutralize to pH 6-7 with 1 N Sulfuric Acid. Find amount to be added on separate sample aliquot, then add the same quantity to the sample being tested. Correct for volume addition. |  |
| Bromine, Br <sub>2</sub> | Interferes at all levels.                                                                                                                                                                                                                                                           |  |
| Hardness                 | Levels below 1000 mg/L as CaCO <sub>3</sub> will not interfere.                                                                                                                                                                                                                     |  |
| Hexavalent Chromium      | alent Chromium Levels more than 1 mg/L will cause a positive interference.                                                                                                                                                                                                          |  |
| lodine, I <sub>2</sub>   | Interferes at all levels.                                                                                                                                                                                                                                                           |  |

| Interfering substance                                                                                | Interference level                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manganese, oxidized (Mn <sup>4+</sup> , Mn <sup>7+</sup> ) or Chromium, oxidized (Cr <sup>6+</sup> ) | <ol> <li>Adjust sample pH to 6-7 with 1.000 N Sulfuric Acid.</li> <li>Add 9 drops Potassium Iodide (30 g/L) to an 80-mL sample.</li> <li>Mix and wait 1 minute.</li> <li>Add 9 drops Sodium Arsenite<sup>1</sup> (5 g/L) and mix.</li> <li>Analyze the treated sample as described in the procedure above.</li> <li>Subtract the result of this test from the original analysis to get the correct concentration.</li> </ol> |
| Ozone                                                                                                | Interferes at all levels.                                                                                                                                                                                                                                                                                                                                                                                                    |

Samples that are treated with sodium arsenite will contain arsenic and may require special disposal consideration. Refer to the current MSDS/SDS for safe handling and disposal instructions.

## Prepare the reagents

Prepare the Total Chlorine Indicator Solution before use as follows.

- 1. Use a powder funnel and add the contents of one 24 g bottle of DPD Powder to one 473-mL bottle of Total Chlorine Indicator Solution.
- 2. Invert several times and swirl until the powder is completely dissolved.
- 3. A pale pink color can develop, but should not have an effect on the results.
- **4.** This solution gives accurate results for at least 1 month after mixing when kept in storage at 20–25 °C (68–77 °F).
- 5. Write the date of preparation on the Indicator Solution Bottle.
- 6. Discard any remaining solution after 1 month.
- 7. Use of this reagent after 1 month can result in high reagent blanks and low values at high concentration.
- 8. Do not mix fresh reagent with previously prepared reagent.

## Prepare analysis labware

Pretreat the labware to remove any chlorine demand. Do not use the same mixing cylinder for a Free Chlorine analysis and Total Chlorine analysis.

- 1. Add 1 mL of commercial bleach to 1 liter of water.
- 2. Fill the mixing cylinder, the sample container and the Pour-Thru Cell with the diluted chlorine bleach solution.
- 3. Soak the labware in this solution for a minimum of 1 hour.
- **4.** Rinse fully with deionized water. Let the mixing cylinder and sample container dry. If the mixing cylinder is fully rinsed with deionized water and dried after each use, only occasional pretreatment is necessary.

#### Clean the Pour-Thru Cell

The Pour-Thru Cell can collect a buildup of products with color, especially if the reacted solutions stay in the cell for long periods of time after measurement.

- 1. Rinse the Pour-Thru Cell with 5.25 N Sulfuric Acid to remove the color.
- 2. Fully rinse with deionized water.
- 3. Put a cover on the Pour-Thru Cell funnel when it is not in use.

## **Accuracy check**

#### Standard additions method (sample spike)

Use the standard additions method (for applicable instruments) to validate the test procedure, reagents and instrument and to find if there is an interference in the sample.

#### Items to collect:

- Chlorine Voluette® Ampule Standard Solution, 50 to 75-mg/L Cl<sub>2</sub> (use concentration on label)
- TenSette® Pipet and tips
- · Ampule Breaker
- 1. Use the test procedure to measure the concentration of the sample, then keep the (unspiked) sample in the instrument.
- 2. Go to the Standard Additions option in the instrument menu.
- 3. Select the values for standard concentration, sample volume and spike volumes.
- 4. Open the standard solution.
- **5.** Prepare three spiked samples: use the TenSette pipet to add 0.3, 0.6 and 0.9 mL of the standard solution, respectively, to three 80-mL portions of fresh sample. Mix well.
- **6.** Use the test procedure to measure the concentration of each of the spiked samples. Start with the smallest sample spike. Measure each of the spiked samples in the instrument.
- 7. Select **Graph** to compare the expected results to the actual results.

**Note:** If the actual results are significantly different from the expected results, make sure that the sample volumes and sample spikes are measured accurately. The sample volumes and sample spikes that are used should agree with the selections in the standard additions menu. If the results are not within acceptable limits, the sample may contain an interference.

## **Method performance**

The method performance data that follows was derived from laboratory tests that were measured on a spectrophotometer during ideal test conditions. Users can get different results under different test conditions.

| Program | Standard                  | Precision (95% confidence interval) | Sensitivity<br>Concentration change per 0.010 Abs change |
|---------|---------------------------|-------------------------------------|----------------------------------------------------------|
| 82      | 1.18 mg/L Cl <sub>2</sub> | 1.17–1.19 mg/L Cl <sub>2</sub>      | $0.02~\mathrm{mg/L~Cl_2}$                                |

## **Summary of Method**

Chlorine can be in water as free available chlorine and as combined available chlorine. Both forms can be in the same water and can be determined together as the total available chlorine. Free chlorine is available as hypochlorous acid and/or hypochlorite ion. Combined chlorine exists as monochloramine, dichloramine, nitrogen trichloride and other chloro derivatives. The combined chlorine oxidizes iodide in the reagent to iodine. The iodine and free chlorine in the sample react with the DPD (N,N-diethyl- p-phenylenediamine) indicator to form a pink color, which is proportional to the total chlorine concentration. To determine the concentration of combined chlorine, complete a free chlorine test and a total chlorine test. Subtract the free chlorine results from the results of the total chlorine test to obtain combined chlorine. The measurement wavelength is 530 nm.

## Consumables and replacement parts

#### Required reagents

| Description                                        | Quantity/test | Unit   | Item no. |
|----------------------------------------------------|---------------|--------|----------|
| Rapid Liquid Total Chlorine Reagent Set, includes: |               |        | 2557000  |
| DPD Indicator Powder, 24-g                         | 1             | varies | 2297255  |
| Total Chlorine Indicator Solution                  | 1 mL          | 473 mL | 2263411  |
| Total Chlorine Buffer Solution                     | 1 mL          | 473 mL | 2263511  |

#### **Recommended standards**

| Description                                                    | Unit   | Item no. |
|----------------------------------------------------------------|--------|----------|
| Chlorine Standard Solution, 10-mL Voluette® Ampule, 50-75 mg/L | 16/pkg | 1426810  |
| Chlorine Standard Solution, 2-mL PourRite® Ampules, 50–75 mg/L | 20/pkg | 1426820  |

## Required apparatus

| Description                              | Quantity/test | Unit | Item no. |
|------------------------------------------|---------------|------|----------|
| Mixing cylinder, graduated, 100-mL glass | 1             | each | 2636342  |
| Dispenser, adjustable volume, 1.0–5.0 mL | 2             | each | 2563137  |
| Funnel, powder                           | 1             | each | 2264467  |

## Optional reagents and apparatus

| Description                                         | Unit       | Item no. |
|-----------------------------------------------------|------------|----------|
| Water, deionized                                    | 4 L        | 27256    |
| Pipet, TenSette <sup>®</sup> , 0.1–1.0 mL           | each       | 1970001  |
| Pipet tips for TenSette® Pipet, 0.1–1.0 mL          | 50/pkg     | 2185696  |
| Pipet tips for TenSette® Pipet, 0.1–1.0 mL          | 1000/pkg   | 2185628  |
| Potassium lodide, 30-g/L                            | 100 mL     | 34332    |
| Ampule Breaker, 2-mL PourRite® Ampules              | each       | 2484600  |
| Sodium Arsenite, 5-g/L                              | 100 mL     | 104732   |
| Sulfuric Acid Standard Solution, 1 N                | 100 mL MDB | 127032   |
| Sulfuric Acid, 5.25 N                               | 1000 mL    | 244953   |
| Ampule Breaker, 10-mL Voluette <sup>®</sup> Ampules | each       | 2196800  |